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IL one neglects the inverse thermoelastic effect, which plays a very in- 
significant role. the problem of thermoelasticity falXs into two parts. 
solved in sequence: the problem of determining the temperature field in 
the shell under given conditions of heat exchange and with given dis- 
tribution of sources of heat; and the problem of determining the stress 
and deformation. 

Let s1 and x2 be the curvilinear coordinates of the mean surface of 
the shell, and let x3 = z be the coordinate taken normal to the aean 
surface. Then, for the temperature T at a given point of the shell, the 
expression may be taken 

T = To (xl,za) + ze (&) (1) 

where To is the temperature of the mean surface, and 8 is the temperature 
gradient in the direction of the normal to the mean surface. The ex- 
pression (1) should be considered as a kind of analogne of the Kirchhoff- 
Lore hypothesis in the theory of shells. 

The problem consists of obtaining two differential equations connect- 
ing the functions To and 8. These same functions lead to differential 
equations for the thersoelastlc deformation of the shell. Combining the 
equations, we shall obtain the entire system of equations of thermo- 
elasticity for thin shells. The particular case of such equations for 
plates has appeared in the literature 11.2 1. A generalization of the 
equations will be given below for the ease oi’ non-stationary fields in 
shells in the Presence of sources of heat: incidentally, an inaccuracy 
in one of the equations of Yelan and Parkus 11 1 is corrected. 

We shall proceed from the variational principle for the problem of 
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heat conduction. We consider the functional 

3T 
T* at- T z / _t- hviT V”T*--Q (T + T*), ) ill= k (TT*-T,T -- T,,T*) 

Here cp is the specific heat, p is the density of the material, X is 
the coefficient of thermal conductivity, q is the density of thermal 
sources equal to the quantity of heat produced per unit time and unit 
volume of the body, k is the coefficient of thermal emission of the sur- 
face of the body and TH is the temperature of the surrounding medium. 
Along with the temperature T, the temperature T* is introduced in ex- 
pressions (3) and (4). characteristic of the process taking place in the 
reverse direction (introduction of this process is necessary in order 
that the phenomenon as a whole should be conservative). The integrals on 
the right-hand side of (2) are taken over the entire volume V of the 
body and over the surface S; t6 and tI are two arbitrarily chosen in- 
stants of time. ViT and V’T* designate the covariant and contravariant 
derivatives with respect to the curvilinear coordinate x1. 

It is not difficult to recognize that the Ostrogradskii-Euler equa- 
tion and the natural boundary condition for the variational problem 
6x= 0 

coincide with the equation of heat conduction and the condition of heat 
transfer on the surface S: 

i3T 
cpp ‘;it - ?qv”T = q, hViTni+ k (T- T,J 3: 0 

(4) 

Here ni is a vector parallel to the outward-drawn normal to the sur- 
face S. 

We consider a thin shell of constant thickness h. The curvilinear co- 
ordinates of the mean surface will be designated by za (it is assumed in 
the following that the Greek indices will take on the values 1 and 2). 
The mean surface Q is bounded by the contour r. The outer surface of the 
shell is designated by a+ and the inner one by a_; the corresponding 
temperatures of the surroundings are designated by T+ and T_. We assume 
that the thickness of the shell is sufficiently small in comparison with 
the radius of curvature that it is possible to set a+= a_= a. 

Replacing the integration over the volume V by an integration through 
the thickness of the shell from -h/2 to h/2 and an integration over the 
mean surface, and the integration over the surface S by an integration 
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over fi+and 62_and over the surface of the edge of the shell, we obtain 
in place of (2) the functional 

(5) 

Here M+, M_ and Mr are expressions of the type of (4) for the surfaces 

a+* a- and for the edge surface. In conformity with the assumption (1) 
we set T = T,, + z@ and T* = To* + ~8’. Carrying out the integration 
with respect to E, we easily obtain 

h/2 

s cpph 
Ldz =y- ( dTo aTo* 

To+ ~-Toat + ) 
--h/2 

+ hh (~J~T~V,T~* + 00*)+ % VaO V,0* - 0 (To+ To*) - Qzo (0 + @*) 

In this expression h/2 h/2 c 1 0 
Q= \ 

- b2 

qdz, zo= $ _\,2 qzdz 

The former quantity is obviously the density of thermal sources Per 

unit area of the mean surface: the parameter zs plays the role of the co- 
ordinate of the “center of gravity” of the sources. For M+ and M_ we ob- 
tain the expressions 

M,= k [(T,++hB)(T,*& fh0*) - T, (To +-To**+ f3+ t0*)] 

Moreover 
h/2 

s Mpdz = h-h [TOT,*- T, (To+To*)] -i- g [00* - 0, (0 + 0*)] 
-h/2 

Here Tr and @y are the mean temperature and temperature gradient on 
the edges. 

The equations of Ostrogradskii-Euler for the variational problem 61=0, 
where I is determined in conformity with (5). has the form 

a aL 
at aT,* + Va a (vFo*) -& (L -t M++ M-)= 0 

From this we obtain the equations 
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8Ti.l 2kTo Q 
at -~ATo+,ph==--- 

C*PA 
I $ (T++ T-1 (6) 

P 
12QaoP 

=7-l- 
6k (T,- T_) 

CnPA CpP@ (7) 

where A-V’lA a, snd x = h/cp9 is the coefficient of heat conduction. 

The natural boundary conditions 

give the conditions of heat exchange on the edges of the shell: 

hV”Ton, + k (To-TTr) = 0, hVaOn, + k (0 - Qr) F 0 (5) 

We notice that the problems of determining the temperature on the 

mean surface T,, and the gradient 8 turn out to be completely independent 

for 8 thin shell. 

The specisl case of Equation (6) for a stationary field in a pfste in 

the absence of heat sources is reported in [ 1,2 f where an averaging of 

the equation of heat conduction is used. An equation analogous to Bqua- 

tion (7) was derived in [ 1 1 in the form (according to our nomenclature) 

6k 0_ 6k(T+-T_) 
-xxn0+- - 

cppk cppka 
(9) 

Thus. it does not agree with Equation (7). It is easy Lo see that 

Equstion (9) is in error. In the case bTo = A 8 = 0, the temperature of 

the free surface is equal to the temperature of the surrounding medium, 

and this is in contradiction to the conditions of heat exchange on the 

surface. Equation (7) is free from this inaccuracy. 

To go over to a concrete curvilinear system of coordfnstes XI and x2 

with Lam& coefficients H, and ffg, it Is sufficient to replrrce the 

Laplace operator according to the well-known formula 

For example, for a circular conical shell with vertex angle 6 and for 

a choice of coordinates the distance x measured from the vertex alone 

the generating line, and the polar angle 4, we obtain 
(101 . I 
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The conditions (8) on the end of the shell I = zO have the form 

‘2 i_ k (T,-Tr) = 0, 
t3X 

??+k(G-C$J=O 

Equations for temperature fields should be considered together with 
equations which describe the thereoelastic deformation in shells. Thus, 
for a shallow shell with thickness h, modulus of elasticity E, Poisson’s 
ratio p and thermal coefficient of expansion a in the case of deflections 
of the same order as the thickness, we obtain the system of equations 

f Pw 
j&AAWaA To=(s2) 

2 a2u d2W 
-~~2-kI~2-kz$ 

2 

(11) 

Here w(xI, x2, t) is the normal deflection function, @( XI, x2, t) is 
the tangential force function, kl and k2 are the principal curvatures of 
the mean surface (it is assumed that the lines of curvature coincide with 
the coordinate lines x2 = constant and XI = constant), and p(xl, ~2, t) 
is the external normal loading per unit mean surface. Equation (11) in- 

cludes an inertial term corresponding to n.ormal displacements. Thus, the 
system is suitable for describing oscillations occurring with frequencies 
of the order of the natural frequencies of the normal oscillations, but 
small in comparison with the natural frequencies of the tangential 
oscillations. If, in consideration of non-stationary problems, the opera- 
tional method is used, it is convenient to deal with the functions T,, 
and 6 represented here rather than to go over to the original [ 3 1. In 
this case, simultaneous consideration of Equations (6) and (7) with 
equations of the type of (11) and (12) is much more convenient. 
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